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ABSTRACT: 
 
Failure from fretting fatigue affects aircraft engine rotors and blades at the blade 
dovetail disk post contact faces. A clear understanding of the fundamental mechanisms 
involved in the mode II shear micro crack initiation, mode I crack propagation and final 
failure has evolved through many studies. Although a number of test methods with 
axially loaded specimens, 4-point bend specimens and dovetail features specimens 
have been used in the various studies, excellent correlation is noted between test 
results. While earlier studies focused on the mitigation of crack initiation mechanism 
through coatings and lubrication, the effectiveness of surface compressive residual 
stress technologies like low plasticity burnishing (LPB) and laser shock peening (LSP) 
to completely shut down the mode I crack growth process is highlighted. LPB 
applications to specific engine rotor and blade to mitigate fretting fatigue are described. 
 
Keywords: low plasticity burnishing (LPB), compressive residual stresses, LSP, fretting 
fatigue, turbine engines, rotors, blade dovetail 
 
 
 
INTRODUCTION: 
 
It has long been recognized that fretting fatigue in contacting metal components that are 
subjected to cyclic stress conditions can suffer localized severe damage at the edge of 
contact (EOC), leading to premature failure and reduced fatigue life. Typically, the local 
damage at the edge of contact manifests itself in crack initiation in the form of mode II 
shear microcracks1,2, mostly limited to a shallow depth of <0.005 in (<125 µm). The 
surface damage is a function of the contact conditions such as normal load, amplitude 
of slip, coefficient of friction and frequency. At certain point, the alternating stresses lead 
to mode I fatigue crack growth, propagating from the fretting-induced localized mode II 
shear microcracks3. Once this crack propagation stage is reached further fretting does 
not contribute to additional damage4, rather crack growth dominates the damage 
process. Several conferences5,6, a series of international fretting fatigue symposia7,8 
and review articles2,9,10,11,12,13,14,15 on the subject have focused on the understanding of 
the contact mechanics and the specific mechanisms and fretting conditions that lead to 
failure. These earlier research have recently culminated in the creation of a new ASTM 
Standard E2789-10 for conducting fretting fatigue tests.16 This standard recognizes that 
fretting fatigue is not a material response, rather it is a system response to a number of 



factors including material, geometry of contact, method by which the loading and 
displacements are imposed, etc. In addition to terminology used in the context of fretting 
fatigue, this standard describes some methods of testing in broad terms. 
 
More recently, the research interests have been on developing specific test methods 
simulating fretting conditions in real components17,18,19,20,21,22,23,24 and the benefits of 
compressive residual stresses to mitigate mode I crack growth and failure from the 
fretting-induced mode II microcrack damage13,25,26,27,28,29,30,31,32,33,34,35,36,37,38. 
 
In this review, an attempt is made to review different test methods and analyze results 
from some of the recent studies involving surface enhancement methods to mitigate 
fretting fatigue cracking in Ti-6Al-4V, the material that is most commonly used in turbine 
engine compressor. These blades and rotors are frequently affected by fretting fatigue 
damage on the contact face of the blade dovetail with the rotor disk posts. Figure 1 
shows the sequence of fretting damage evolution leading to final failure in the rotor-
blade dovetail contact faces. The edge of contact (Figure 1b) is the region of Maximum 
shear stresses39. Severe localized plastic deformation due to the maximum shear leads 
to the formation of slip bands at the EOC (Figure 1c). Continued deformation leads to 
the formation of mode II microcraks (Figure 1d), and these make the transition to mode I 
fatigue cracks (Figure 1e), leading to catastrophic failure. Most of the research focus 
has been on minimizing the EOC shear stresses through lubricants, coatings, etc., to 
mitigate mode II initiation of shear cracks. Recently, great strides have been made to 
mitigate mode I crack growth by introducing compressive residual stresses in the 
affected regions of the dovetail sections.  
 
The goals of this review are to analyze, compare and summarize the results obtained 
through different fretting fatigue test methods in some of these studies, and to compare 
the beneficial effects of surface treatments like shot peening, low plasticity burnishing 
(LPB) and laser shock peening (LSP) to mitigate the mode I crack growth. Although the 
discussions in this review are limited to fretting fatigue of Ti-6Al-4V on Ti-6Al-4V parts, 
the general findings are broadly applicable to many other systems. The separation of 
these different stages of crack initiation, crack growth and final failure regardless of the 
mechanisms involved at each stage allows for mitigation of one of the stages to avert 
the catastrophic failure. The compressive residual stress technologies do not stop the 
fretting induced mode II shear crack initiation process. Complete mitigation of mode I 
crack growth and catastrophic failure is possible with the residual compression.  
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Figure 1. Typical fretting fatigue damage sequence on the contact faces of the 
disk post and blade dovetail in a turbine engine. (a) Schematic of affected region, 
(b) EOC, (c) Formation of shear bands (arrows) at the EOC, (d) Formation of Mode 

II shear microcracks at the EOC, (e) Fractograph showing Mode I fatigue crack 
growth (seashell marks) emanating from the shear micro cracks (arrows). 
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REVIEW OF FRETTING FATIGUE TEST METHODS AND RESULTS: 
 
Most of the earlier test methods were some variation of the conventional axially loaded 
fatigue flat “dogbone” specimen, contacted on both sides with cylindrical or short flat 
pads with blending radii at the edges of contact to induce fretting damage. Figures 2 
and 3 show a typical test set up from Conner et al17,31. The typical contact and shear 
forces that are considered to be critical in the understanding of the evolution of fretting 
fatigue damage are shown schematically in Figure 4. In Figure 3 the axially loaded 
specimen surfaces are subjected to contact fretting with the use of pads. The normal 
forces on the pads can be adjusted, independent of the axial forces applied on the 
specimen, and a variety of test conditions can be examined. All the tests were 
conducted at a nominal R = Smin/Smax = -1. Indeed, in these studies, the authors 
investigated the effects of axial bulk stress (σb), normal load (P), and tangential load (Q) 
in fretting of Ti-6Al-4V on Ti-6Al-4V. The results in Figure 5 show the effect of changing 
the tangential load on fatigue life. Evidently, increasing the tangential load from 15 to 
30N increases the fretting damage. However, it is unclear if greater fretting damage is to 
be expected at even higher tangential load, and if there is a critical tangential load at 
which maximum fretting damage will happen.  
 

 
 

Figure 2 – Schematic of fretting fatigue sample and pad geometry. (all dimensions 
in millimeters, not to scale) (Conner et al 200117,31) 
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Figure 3 – Fretting fatigue test apparatus.[7] LC 5 load cell. (Conner et al 200117,31) 
 
 
 

 
 

Figure 4 – Contact geometry and the forces contributing to fretting damage.15 
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Figure 5 – Fretting fatigue test results from Conner et al17 – axially loaded 
specimens with square cross section with transversely loaded fretting pads. 

 
 
Neu et al15,19,20 used a test setup shown in Figures 6 and 7. In the axially loaded fatigue 
specimen, they used four symmetrically placed contacts on the edge surfaces of the flat 
specimen. The results from this study for tests conducted at different R = Smin/Smax are 
shown in Figure 8. The pad geometry made little difference in the fretting fatigue life, at 
least at the stress ratio, R = -1. This effect was not studied at other stress ratios. The S-
N data for other stress ratios, essentially followed the typical S-N response for any other 
type of damage, i.e., the allowable σalt at a given Nf is seen to increase with decreasing 
R. In this study, Neu et al conducted fretting fatigue tests with LPB as a surface 
treatment and the effects will be discussed in the next section.  
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Figure 6 – Schematic of the Fretting Fatigue test Set up used by Neu et al.15,19,20 
 

 
 

Figure 7 – Photo of the set up used by Neu et al.15,19,20 
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Figure 8 – S-N data from fretting fatigue tests conducted by Neu et al15,19,20 – 
axially loaded specimens with rectangular cross section with transversely loaded 

multiple fretting pads. 
 
Prevéy et al25 used a 4-point bend fatigue apparatus that enabled the investigation of 
the relative effects of different surface treatments on fretting fatigue performance in 
materials, shown in Figure 9. Here, a specially designed specimen with a trapezoidal 
cross section is subjected to 4-point bending, and the maximum applied tensile stresses 
are realized on the top surface of the specimen with a gradient towards the neutral axis. 
The trapezoidal cross-section forces failure from the top face of the specimen even in 
the specimens with surface enhancement treatment like LPB or shot peening. A pair of 
fretting rods in a “bridge” configuration is pressed against the sample surface by an 
instrumented proving ring, which allows the adjustment, and monitoring of the force 
applied on the fretting rods. Preliminary trials were conducted to determine the optimum 
forces on the fretting rods that would produce the most serious fretting debit in fatigue 
performance. Since the focus of these studies were on the mitigation of fretting fatigue 
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damage using various surface treatments, the clamping force was held constant, and 
the contact mechanics and other factors for this method of testing were not considered.  

 
 
Figure 9 – HCF (4-point bending) testing set up with the fretting fixture mounted 
on the specimen used by Prevéy et al25 – full view of the test set up and a close-

up view of the specimen. 
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Figure 10 – S-N data for the baseline condition from Prevéy et al25 – four-point 
bending specimens with two fretting pads loaded normally to the tensile face. 

 
Figure 10 shows the S-N plot for the baseline (untreated) condition without and with 
fretting damage. The effects of fretting are evident in this plot. 
 
Recognizing the geometry in fretting of turbine engine compressor blade dovetails, a 
number of researchers focused on simulating this geometry and loading in test 
methods, for example, Conner et al used a setup shown in Figure 11. As seen in the 
schematic shown in Figure 12, this geometry leads to very complex local contact forces 
and moments (both bending and torsional) that contribute to fretting at the edge of 
contact and fatigue cyclic stresses. A slight variation of the set up used by Conner et 
al21 was used by Golden et al23, as shown in Figure 13. Golden et al conducted all their 
tests at R = Smin/Smax = 0.1, while Conner et al conducted a majority of their tests at R = 
0.1. In addition to investigating test parameters like frequency, R, pad geometry, etc, 
these two groups also investigated the effects of surface treatments like LPB, laser 
shock peening (LSP), coatings, etc. The effects of surface treatment will be discussed in 
the next section. The fatigue performance for the baseline (untreated) condition in 
studies conducted by Conner shows a fatigue strength corresponding to a force of 
about 18 kN. Similarly, in Golden’s studies, the baseline fatigue strength corresponded 
to a force of 16-18 kN. 

 

 
 

Figure 11 – A photograph of the dovetail fixture with specimen and contact pads. 
(Conner et al 2006)21 
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Figure 12 – A schematic of a blade-disk dovetail attachment in an aeroengine.21 
 

 
 

Figure 13 – Photograph of the dovetail fretting fatigue setup – Golden et al.23 
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Figure 14 – Plot of fretting fatigue test results from Conner et al21 – specimens 

with dovetail features. 
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Figure 15 – Fretting fatigue data from Golden et al33– specimens with dovetail 
features. 

 
 
EFFECTS OF FRETTING GEOMETRY: 
 
Figure 16, provides an interesting comparison of results from test methods used by Neu 
et al and Conner et al. Considering the fact that both groups ran the tests in similar axial 
loaded conditions with fretting damage on the specimen surface through similar pads, 
the differences in the responses are evident. As indicated earlier, the fretting tangential 
loads applied in Conner et al work may have led to a less severe damage condition, 
compared to the conditions in the tests by Neu et al. It is also quite possible that this 
could be explained by the differences in the interactions between the fretting pad and 
the base specimen or in the microstructure of the material.  

 
13 

 



105 106 107
0

100

200

300

400
R = Smin/Smax = -1

Baseline (Untreated)
 Data from Conner etal

 Data from Neu etal

S m
ax

, M
Pa

Cycles

Ti-6Al-4V Fretting Fatigue
Comparison of Test Results - Neu etal vs. Conner etal

Axially Loaded Specimens

 
 

Figure 16 – Comparison of results from fretting axial fatigue tests conducted by 
Neu et al15,19,20 and Conner et al17,31 at R = -1. 

 
 
Figure 17 shows a comparison of test results from the axial fretting fatigue tests 
conducted by Neu et al and the 4-point bending fatigue tests conducted by Prevéy et al. 
It is interesting to note that in spite of the differences in the test methods the correlation 
between the test results are remarkable.  
 
A similar comparison of test results from dovetail simulation specimens used by Conner 
et al and Golden et al shown in Figure 18 indicates that there is significant 
correspondence between these results. Since the test conditions were nearly identical 
between these two studies, it is not surprising to see such correlation. 
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The comparisons shown in Figures 16 through 18 may warrant additional analyses to 
determine if the correlation is real or fortuitous, and more importantly if such analyses 
are relevant when viewed in the context of pursuing a solution to the fretting fatigue 
problem, rather than studying the problem. 
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Figure 17 – Comparison of fretting fatigue test results from Neu et al15,19,20 and 
Prevéy et al.25 
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Figure 18 – Comparison of test results for the baseline (untreated) condition for 
dovetail simulation data, R = 0.1, from Conner et al21 and Golden et al.33 

 
 
The results from these various studies indicate that there is substantial agreement and 
consistency between the various methods of testing. More importantly, it appears that 
the material/component behavior is affected by the local stress state more than the way 
the stress is applied. That is, axial, bending, or combined stresses all can lead to a 
tensile stress component in a region. When this region is subjected to contact-induced 
shear at the edge contact, it will lead to similar debit in fatigue performance. There is 
also no significant effect of frequency on the test results, all conducted at room 
temperature. Further, use of any of these test methods to interrogate the effects of 
surface treatments to mitigate the fretting damage will yield consistent results. 
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EFFECT OF SURFACE TREATMENTS ON FRETTING FATIGUE LIFE: 
 
Several different studies have been conducted on the effects of surface treatments to 
introduce compressive residual stresses to mitigate fretting fatigue damage with varying 
degrees of success. Figure 18 shows a photograph of an LPB treated test specimen 
used in the studies by Neu et al26. The polished looking LPB zone in the gage section of 
the specimen is evident in this figure. Similarly, Figure 19 shows the LPB treated zone 
near the contact regions of the dovetail simulation specimen used in the studies by 
Conner21. One important distinction in LPB treatment is that unlike shot peening, which 
is often applied uniformly all over the surface of a component, LPB is applied only in the 
local affected regions with the fretting or any other damage. In actual components (and 
in these specimens) the residual stress distribution and the entire LPB operation is 
specifically designed to mitigate the damage in the applied stress field. 
 

 
Figure 18 – A photograph of a LPB treated axial specimen. Notice the polished 

appearance of the specimen in the gage section. (Neu et al 200626) 
 

 
Figure 19 – A photograph of a LPB treated specimen in the dovetail fixture. Notice 
the polished appearance of the specimen regions near the contact pad. (Conner 

et al 200621) 
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Figure 20 is a S-N plot of the fatigue test results from Neu et al showing the benefits of 
LPB on axial specimens subjected to fretting fatigue. There is over a 100x improvement 
in fatigue life, depending on the applied stresses, and over a 2x improvement in fatigue 
strength. It is important to note that the two specimens that failed in this group of LPB 
treated specimens both failed outside the LPB zone. Therefore, the actual improvement 
in fatigue performance with LPB is greater than indicated. The importance of proper 
specimen design to interrogate the effectiveness of this type of technology is also 
indicated. This observation is repeated in almost all of the other studies. 
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Figure 20 – Fatigue test data from Neu et al15,19,20 showing the benefits of LPB, 
both in improved life and in improved fretting fatigue strength, of Ti-6Al-4V. Note 
that the LPB benefit is greater than indicated because failure did not occur within 

the LPB zone. 
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The comprehensive work of Prevéy et al25, shown in Figures 9, 21, 22 and 23, clearly 
brings out the relative benefits of shot peening and LPB treatment to mitigate fretting 
fatigue damage. In this early study from 2003, again all the LPB treated specimens 
tested at stresses below about 100 ksi did not fail from crack initiation at fret marks. 
However, it is important to note that >100x and >20x improvement in life is seen for LPB 
treated specimens compared to the baseline (untreated) and shot peened specimens, 
respectively. 
 
The results from Conner et al in Figure 13 show the relative benefits of Al-bronze 
coating and LPB treatment to mitigate the fretting fatigue damage in dovetail feature 
specimens. The slight improvement in performance for the Al-bronze coating is evident, 
but the substantial benefits of LPB treatment to mitigate fretting fatigue damage is 
unmistakable in this plot. Again, the LPB treated specimens in this study did not fail 
from the fretting damage, rather by overload in other parts of the specimen. 
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Figure 21 – Fatigue test results for shot peened Ti-6Al-4V specimens from Prevéy 
et al.25 
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Figure 22 – Fatigue test results for LPB treated Ti-6Al-4V specimens from Prevéy 
et al.25 

 
Golden et al also conducted comprehensive studies comparing the performance of 
dovetail feature specimens with DLC (diamond like coatings), LSP treatment and LPB 
treatment under fretting fatigue conditions. In their conclusions, although the authors 
grouped both the LPB and LSP treated specimens to show similar benefits, it is quite 
evident from Figure 14 that the LPB treated specimens (without and with DLC coatings) 
clearly outperformed specimens with all other treatments. There is a >10x improvement 
in life for LPB treated specimens over the LSP treated specimens tested at the highest 
load. 
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Figure 23 – Comparison of fatigue test results for baseline (untreated), shot 
peened and LPB treated Ti-6Al-4V specimens with fretting from Prevéy et al.25 

 
 
EFFECT OF SURFACE TREATMENTS ON FRETTING SCARS 
 
It is evident from the various studies of Prevey, Connors, Neu and Golden that 
compressive residual stresses introduced by LPB or LSP significantly mitigate failure 
from fretting fatigue. These studies have demonstrated that mode I crack growth can be 
completely shut down by the compression. It is important to note that fretting damage in 
the form of fretting scars or the deformation at the edge of contact is not affected by the 
compressive residual stresses. Although a systematic study including all the variables 
like the forces on the fretting pads (like Pnormal, Q, etc.,) was not conducted, a review of 
a comparison of the size of the fretting scars for the LPB treated surfaces vs the 
baseline (untreated) surfaces in Prevey et al’s research is in order. Figures 24 and 25 
show typical fret marks from a baseline untreated specimen and an LPB treated 
specimen. Fret marks in shot peened specimens were not clearly visible due to the 
rough surface finish in those specimens. Figure 26 shows a comprehensive plot of the 
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effect of surface treatment and applied stresses on the width of the fret marks. 
Generally, the LPB treated surfaces show wider fret scars compared to the untreated 
surfaces. This is attributed to the smooth surface finish and higher fatigue stresses for 
these specimens. However, the scar size appears to have very little influence on the 
total fatigue lives. As seen in Figures 10 and 21 to 23, LPB specimens clearly 
outperformed the baseline untreated specimens. One must conclude that the 
compressive residual stress had little influence on the development of fretting damage, 
but had a significantly beneficial effect on preventing the propagation of cracks. This is 
the primary focus of the component studies presented in the following section. 
 

 
Figure 24.  Typical fretting fatigue scar on baseline untreated Ti-6Al-4V specimen 
surface Smax=35 ksi and Nf=427,787 cycles) 
 

 
Figure 25.  Typical fretting scar on LPB treated Ti-6Al-4V specimen surface. Smax=78 ksi 
and Nf=1,550,922 cycles) 
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Figure 26. Plot of Fretting Scar Size as a function of Maximum Fatigue Stress.  
 
 
COMPONENT STUDIES: 
 
Several studies have been conducted over the last decade to mitigate fretting fatigue 
damage in F402 Stage 1 compressor blade dovetail contact faces, F402 Stage 1 rotor 
post contact faces, and contact faces in F404 Stage 1 compressor blades. Publications 
representative of these works are given in references 40,41,42. In each of these cases, 
the residual stress design was done using the FDD (fatigue design diagram) method43 
and other linear elastic fracture mechanics (LEFM) based lifing methods44. Appropriate 
LPB tools were used, and LPB design protocol was followed in the execution of these 
programs, details of which may be obtained from the cited reference. Full-scale 
component tests were conducted to verify the performance to fully mitigate simulated 
fretting fatigue damage.  
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Figure 24 shows the LPB treated dovetail contact face on a F404 Stage 1 compressor 
blade. Figure 25 shows the location, geometry and size of the simulated fretting 
damage in the form of an EDM notch at twice the maximum fretting induced microcrack 
depth located at the edge of contact. The location of this simulated damage is 
consistent with the damage seen in fielded blades, and the size is considered to be 
more aggressive than what is typically seen for fretting induced microcracks. While the 
fretting induced microcrack damage is limited to 0.003 to 0.005 in. deep from the 
surface, the simulated damage in the form of an EDM notch, as shown in Figure 25 is 
0.010 in. deep. Figure 26 shows the typical fatigue test setup used at Lambda for 
component tests. A cantilever beam arrangement is used, and the maximum applied 
stress is at the location of the edge of contact in the dovetail section of the blade. 
Fatigue tests were conducted both on baseline (as-received) blades and LPB treated 
blades at an R = Smin/Smax = 0.5. This higher R was chosen in view of the fact that the 
dovetail sections experience a high mean stress associated with the centrifugal forces 
during the service of the aircraft engine. The as-received blades were previously shot 
peened per OEM specifications, and therefore had a shallow layer of compressive 
residual stresses. Comparison of test results for both the smooth and simulated damage 
conditions are shown in the form of a bar chart in Figure 27. As seen here, the fatigue 
performance of the LPB smooth condition shows that LPB did no harm over the 
baseline (as-received) condition. Indeed, with the simulated damage of 0.010 in. deep 
EDM notch, the fatigue performance was much better than the baseline (as-received) 
condition (an undamaged part). 
 

 
 

Figure 24 – Photo showing the LPB treated dovetail contact face on a F404 Stage 
1 compressor blade. 
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Figure 25 – Location and dimension of an EDM notch simulating fretting fatigue 
damage at the edge of contact in the F404 blade dovetail contact face. 

 

 
 

Figure 26 – Full scale fatigue test set up for the F404 Stage 1 compressor blade 
dovetail. 
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Figure 27 – Bar chart showing the relative fatigue performance of baseline, and 
LPB treated F404 Stage 1 Compressor blade dovetail contact faces with and 

without simulated fretting damage. 
 
 
Similar fatigue performances have been reported for both the F402 Stage 1 compressor 
blade dovetail contact face and rotor post contact face. Figure 28 shows LPB treated 
contact face on the dovetail region of the compressor blade. The smooth polished 
surface is evident in this figure. Figure 29 shows the cantilever beam fatigue test set up, 
similar to that in Figure 26. The S-N data from the cantilever bending fatigue tests 
conducted on the dovetail section of the F402 Stage 1 compressor blades are shown in 
Figure 30. Fretting damage was simulated in these blades by an EDM notch of 0.1 in. 
surface length and 0.02 or 0.03 in. depth at the edge of contact, four (4) to six (6) times 
the maximum depth of a fretting induced microcrack. The benefits of LPB treatment are 
evident in this figure.  
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Figure 28 – LPB treated contact face of the dovetail in F402 Stage 1 compressor 

blade. 
 

 
 

Figure 29 – Cantilever bending fatigue test set up for the F402 Stage 1 
compressor blade. 
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Figure 30 – S-N data showing the benefits of LPB treatment to mitigate simulated 

fretting damage in F402 Stage 1 Compressor blade dovetail section. 
 
 
An LPB treated disk post was removed from the rotor and is shown in Figure 31. The 
smooth finish on the contact surface created by the LPB process is seen in this 
photograph. Figure 32 shows the cantilever beam fatigue test set up. The top contact 
surface is subjected to bending load and any damage leading to cracking on this 
contact surface will experience the classic mode I crack growth condition. As indicated 
earlier, typical fretting damage initiation starts through a set of mode II shear cracks, 
which are oriented at an angle of about 45o to the surface at the edge of contact and are 
shallow (< 0.003 in. deep). The main damage progression is through mode I crack 
growth starting from these initiated shear cracks.  Figure 33 shows the fatigue life of 
F402 stage 1 compressor disk posts tested in cantilever bending mode. None of the 
LPB treated posts failed from the simulated fretting damage in the form of EDM notches 
(0.1 in surface length and 0.02 in. depth) at the edge of contact. 
 
 

 
28 

 



 
 

Figure 31 – An LPB treated disk post removed from the F402 Stage 1 rotor. 
 

 
Figure 32 – Cantilever beam bending fatigue test set up for the F402 Stage 1 

compressor disk post. 
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Figure 33 – Location and size of EDM notch on the contact surface of F402 Stage 
1 compressor disk post to simulate damage at the edge of contact. 
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Figure 34 – Fatigue test results from F402 Stage 1 compressor disk posts tested 
in cantilever bending mode. 

 
SUMMARY: 
 
A great deal of basic and applied research has been conducted by numerous research 
groups over the last three decades to understand the fretting fatigue damage initiation 
and damage progression to failure in Ti-6Al-4V. Various test methods including axially 
loaded simple coupon specimens, 4-point bend specimens, dovetail feature specimens, 
and full-scale components have been used in these studies. Fretting damage manifests 
itself in a relatively simple way through the formation of microcracks at the edge of 
contact, initiated by severe very localized plastic deformation (slip) leading to the 
formation of shear bands, which lead to the creation of the Mode II microcracks. These 
microcracks are typically 0.002 in. to 0.005 in. deep, and since formed by a shear 
mechanism are typically oriented at nearly 45 degrees to the surface. Further crack 
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growth happens by the normal Mode I fatigue crack growth processes under the mean 
and alternating long range-applied stresses. It is quite evident from this literature review 
and analyses that the test results from various groups and test methods are quite 
comparable. 
 
The effects of several different surface enhancement methods were shown to lead to 
varying degrees of success in mitigating fretting fatigue damage. The different coatings 
used in these studies seemed to make some improvement in the performance; 
however, significant improvements have been demonstrated when compressive 
residual stresses are used. Even among the compressive residual stress technologies, 
while the conventional shot peening shows some benefit over the untreated condition, it 
does not completely mitigate the fretting fatigue damage. This is associated with the 
shallow depth of compression and a tendency for the shot peened compression to be 
relaxed due to the localized deformation in the fretting zone. In comparison, 
technologies like LSP and LPB provide significant benefits. Of these two technologies, 
several studies conducted by the AFRL have repeatedly shown that LPB treated 
components outperform LSP treated components.  
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